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Spartan/Augustus Code

Spartan:

Augustus:

JTpack:

UMFPACK:

LINPACK:

BLAS:

Package Description

SPy, 2T 4+ Multi-Group, Even-Parity
Photon Transport Package with v/c cor-

rections
P, (Diffusion) Package

Krylov Subspace Iterative Solver Package
(by John Turner, ex-LANL)

Unstructured Multifrontal Solver Pack-
age (an Incomplete Direct Method by
Tim Davis, U of FL)

Direct Dense Linear Equation Solver

Package

Basic Linear Algebra Subprograms
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Spartan/Augustus Code Size

Included files counted only once:

Spartan:
Augustus:
JTpack:
UMFPACK:
BLAS:
LINPACK:

10213 lines, 57% comments
12872 lines, 60% comments
14167 lines, 54% comments
15393 lines, 58% comments
7467 lines, 48% comments
6926 lines, 52% comments

Total

With includes:

Spartan:
Augustus:
JTpack:
UMFPACK:
BLAS:
LINPACK:

67038 lines, 56% comments

14080 lines, 71% comments
31595 lines, 78% comments
36009 lines, 73% comments
15393 lines, 58% comments
7467 lines, 48% comments
6926 lines, 52% comments

Total

111470 lines, 73% comments
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e Energy/Temperature Discretization

— Solves 2 T + Multi-Group Even-Parity Equations
— Can yoke T, and T} together to make 1 T

— (Can use a single-group radiation treatment to make 3 T
e Angular Discretization

— Uses Simplified Spherical Harmonics — S Py
— Can do a P; (diffusion-like) solution

e Spatial Discretization

— S Py decouples equations into many diffusion equations

— Diffusion equations are solved by Augustus
e Temporal Discretization

— Linearized implicit discretization
— Equivalent to one pass of a Newton solve
— Iteration strategy:

x Source iteration

* DSA acceleration
* LMFG acceleration
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Method Overview: Augustus

e Spatial Discretization

— Morel-Hall asymmetric diffusion discretization
— Support Operator symmetric diffusion discretization

— Hall symmetric diffusion discretization (2-D, x-y only)
e Temporal Discretization

— Backwards Euler implicit discretization
e Matrix Solution

— Krylov Subspace Iterative Methods

« JTpack: GMRES, BCGS, TFQMR

* Preconditioners:

- JTpack: Jacobi, SSOR, ILU
- Low-order version of Morel-Hall discretization that

is a smaller, symmetric system and is solved by CG

with SSOR. (from JTpack)

— Incomplete Direct Method - UMFPACK
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Mesh Description

Multi-Dimensional Mesh:

Dimension | Geometries | Type of Elements
1-D spherical, line segments
cylindrical
or cartesian
2-D cylindrical | quadrilaterals or triangles
or cartesian
3-D cartesian hexahedra or degenerate
hexahedra  (tetrahedra,
prisms, pyramids)

all with an unstructured (arbitrarily connected) format.

N/

This presentation will assume a 3-D mesh.
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Simplified Spherical Harmonics (S Py)
Even-Parity Equation Set

Radiation transport equations:

19 — —
“geme T VT m,g + Ogém.g = Ogdg + 0GBy +Cp
10— — — —
Y I m,g+ﬂ72nvfm,g+f7§ ['mg= C myg

form=1,M,and g =1,G.

Temperature equations:

Oyl = ale=T)+Q;,
C OTe _ . & a ,(0) e
et = a(Tz—Te>+Qe+gzl(ag¢g - o4By) |
where

Em,g = Even-parity pseudo-angular energy intensity,
?m,g = Even-parity pseudo-angular energy current,
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Simplified Spherical Harmonics (S Py)
Even-Parity Equation Set (cont)
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Simplified Spherical
Harmonics (S Py) Properties

S P and Pj; equations are identical.

S Py and Ppy equations are identical in 1-D slab ge-

ometry.

Rotationally invariant — no ray effects.

S Py is a non-convergent method. It is an asymptotic
approximation associated with the diffusion limit. As
N —— o0, the solution doesn’t necessarily converge

to the true answer.

S Py has almost the same accuracy for lower orders as
S if the solution is approximately locally 1-D, but is

much cheaper.
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Simplified Spherical
Harmonics (SPy) Properties (cont)

e With DSA and LMFG acceleration, S Py costs MG+

G + 1 diffusion solutions for every outer iteration.

e Unlike the diffusion equation, the SPp equations
propagate information at a finite speed. For radiation,
this speed approaches ¢ from below as the order of ap-

proximation is increased.

e Order N unknowns for S Py, vs. order N2 unknowns

for Py and S)yy.

e [n a homogeneous region, SPx and Py scalar flux
solutions satisfy same equation, except with different

boundary conditions.
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Simplified Spherical Harmonics
(SPy) Temporal Discretization

Radiation transport equations:
10 - t S e S

10— —

P Fm,gJFNinVﬁm,ngag C'mg= C g

form=1,M,and g =1,G.

Temperature equations:

oT;

Cm;@—?’ = a(le—T;)+Q;,
t
oT, - 0
ve 8t€ — O{(Ti_Te>+Qe‘|‘2<US¢;>_U§BQ> 3
g:

where

Blue = Implicit or backwards Euler terms,
Magenta = Explicit or extrapolated implicit terms,

Red = Implicit terms accelerated by DSA,
(reen = Linearized implicit terms accelerated by LMFG.

This is not quite accurate it’s actually more complicated than this but this captures the flavor of the temporal discretization.
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Simplified Spherical Harmonics
(SPy) Source Iteration Strategy

S Py Equations: Red and terms are treated
explicitly, equations decouple into M X G separate

diffusion equations

DSA Equations: summing over angle and treating Red
terms implicitly leads to G separate diffusion equa-

tions, which provide an angle-constant update

LMFG Equation: summing over group and treating
terms implicitly leads to a single diffusion equa-

tion, which provides a spectrum-scaled update

These equations are solved repeatedly until the Red

and terms converge
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d s
ag—t— VIDVP+V:-J +0d=S5

Which can be written

oy — —
—+ V-F +00=S85
a@t \V4 o

—

F=-DVdit J

Where

b = Intensity

? = Flux
D = Diffusion Coefficient
a = Time Derivative Coeflicient
o = Removal Coeflicient

= Intensity Source Term
7 = Flux Source Term
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Method Properties

All three methods:

e Are cell-centered — balance equations are done over a

cell

e Require cell-centered and face-centered unknowns to

rigorously treat material discontinuities

e Preserve the homogeneous linear solution, and are

second-order accurate

e Reduce to the standard cell-centered operator for an

orthogonal mesh

e Maintain local energy conservation
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Diffusion Discretization
Method Properties (cont)

e Morel-Hall Asymmetric Method

— Described in

Michael L. Hall, and Jim E. Morel. A Second-Order Cell-
Centered Diffusion Differencing Scheme for Unstructured Hex-
ahedral Lagrangian Meshes. In Proceedings of the 1996
Nuclear Explosives Code Developers Conference (NECDC),
UCRL-MI-124790, pages 359-375, San Diego, CA, Octo-
ber 21-25 1996. LA-UR-97-8.

which is an extension of

J. E. Morel, J. E. Dendy, Jr., Michael L. Hall, and Stephen W.
White. A Cell-Centered Lagrangian-Mesh Diffusion Differenc-
ing Scheme. Journal of Computational Physics, 103(2):286-
299, December 1992.

to 3-D unstructured meshes, with an alternate derivation.
e Hall Symmetric Method:
— DBased on the above method, but only applicable in 2-D x-y.
e Support Operator Symmetric Method:

— Extension of the method described in

Mikhail Shashkov and Stanly Steinberg. Solving Diffusion
Equations with Rough Coefficients in Rough Grids. Journal
of Computational Physics, 129:383-405, 1996.

to 3-D unstructured meshes, with an alternate derivation.
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Diffusion Discretization Stencil

The flux at a given face, for example the +k-face,

—

F ﬁzl =—Dc 1 V P+ T

is defined using this stencil:

in the Asymmetric Method. The Support Operator Method

uses all seven unknowns within a cell to define the face flux.
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Each cell has a cell-centered conservation equation which
involves all six face fluxes, and gives a stencil which includes
all seven unknowns within the cell (in both methods).

. e
CI)c‘ ............... ® +
@ Rt
e
D, [}

To close the system, an equation relating the fluxes on each

side of a face is added for every face in the problem. This
gives the following stencil:

® b4
. o e
° Rt ® o
) ® @

in the Asymmetric Method. The Support Operator Method

uses all thirteen unknowns within a cell-cell pair to define
the face equation.
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Algebralc Solution

e Main Matrix System (Asymmetric Method):

— Asymmetric — must use an asymmetric solver like

GMRES, BCGS or TFQMR
— Size is (4n¢ + np/2) squared

— Maximum of 11 non-zero elements per row
e Main Matrix System (Support Operator Method):

— Symmetric — can use CG to solve
— Size is (4n¢ + np/2) squared

— Maximum of 13 non-zero elements per row

e Preconditioner for Krylov Space methods is a Low-

Order Matrix System:

— Assume orthogonal: drop out minor directions in

flux terms
— Symmetric — can use standard CG solver
— Size is ne squared

— Maximum of 7 non-zero elements per row
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Results: Sample Augustus Problem

e 3-D Kershaw-Squared Mesh

e Constant properties

e No removal or sources

e Reflective boundaries on 4 sides

e Source and vacuum boundary conditions on opposite

sides

e Analytic solution - linear

o Grid size - 20 x 20 x 20 = 8000 nodes, 6859 cells

e 50 time steps, 15 s / time step on IBM RS/6000 Scal-
able POWERparallel System, SP2
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Results: Sample Problem
Actual Mesh (Cell Nodes)
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Sample Problem

Results
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Orthogonal Mesh Steady State Solution

0.716
0.673

Cells
phi
= 0.863
0.327
0.284

—10.286
—0.543
0.3
0.457
—0.413
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Cells

phi
0.722

0.677

. —0.633

—0.389

0.544

0.3

0.435

0.411

0.367

0.322

0.278

Results: Sample Problem

Kershaw-5Squared Mesh Steady State
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Results: Sample Problem

Kershaw-Squared Random Cutplane

Cutplane

phi
0.722

0.677
—0.633
—0.580
0.544
0.5

0. 455

0.411

0.367

0.322

0.278
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Future Work

Parallel (JTpack90, PGSlib, SPAM)

Object-based, design-by-contract F90

Generic programming?

Integrated documentation (HTML, PS)

Newton-Krylov solution method?

Alternate angular discretization?

Self-adjoint equation set?
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